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 Lecture 7.   Concept of the stability. Algebraic criteria of stability 

 7.1   Stability. Stability according to A.M. Lyapunov 

Notion stability of regulating system is related to its ability to return to 

equilibrium state after all external forces which lead to unstable state have vanished. 

So, unstable system does not return to equilibrium state out of which it was brought.  

A vivid example  of stability of equilibrium is a ball lying in a cavity  

(fig. 3.1a, 3.1b, 3.1c). 

 
Fig. 3.1a. Stable equilibrium Fig. 3.1b.  Unstable equilibrium 

 
Fig. 3.1c. Neutral (indifferent) equilibrium 

 

Any deflection of the ball from its equilibrium state will tend to decrease, thus 

returning either to its exact initial position (no friction) or to some finite equilibrium 

region (in presence of friction forces). Such position of the ball is stable (fig. 3.1). 

Let us introduce a notion of Undisturbed Equilibrium state, corresponding to 

point A0 (all points in this paragraph are from fig. 3.1a – 3.1c), and Disturbed 

Equilibrium state, corresponding to point A2. After all external forces are vanished 

the ball returns to point A0 or A1. Stability criterion in this case can be formulated as: 

if the system passes from disturbed equilibrium state to some finite region 

surrounding undisturbed state, then it is called a stable system. 

Stability notion can be extended to cover dynamic systems too. In general, 

considering nonlinear systems, notions stability in small, stability in large and global 

stability are used. A system is stable in small, if only a stability region existence fact 

is established, but not its boundaries. In contrast, a system is called stable in large, if 

these boundaries are determined, i.e. the boundaries of initial deflection region at 

which the system returns to initial state are determined, and real initial deflections are 

within these boundaries. In a case when a system falls back to its equilibrium state at 

any initial deflections, it is called generally stable. 

Stability notion is extended to more general case, when we consider a system 

movement in whole as its equilibrium, not only its undisturbed state. 

Now, let a dynamic system state be defined as a set of independent coordinates

     txtxtx n,...,, 21 . The system movement is described as a set of rules

     txtxtx n02010 ,...,, . This predefined movement is called Undisturbed 

 A2 

A1 
A0 

 
A2 

A1 
A0 

A0 
A1 



2 
 

Movement. Application of external disturbances will cause deflection of real behavior 

from the predefined one: 

 

           txtxtxtxtxtx nn 0202101 ...,,,  . 

 

The real behavior is called Disturbed Movement. 

Definition: predefined undisturbed motion of a system is called Stable Motion 

if as a result of application of external forces (which are eliminated after that) the 

system disturbed motion after some period of time move to a region 

 

  .,1;,0)()( 0 niconsttxtx iiiii    

 

Let us now consider stability even more deeply. For the first time strict 

definition of stability was given by Russian scientist A. M. Lyapunov in 1892. 

A little bit mathematics: let a dynamic system be described by a set of 

nonlinear differential equations in Cauchy form: 
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If initial values xi0 are given at   t = t0  the solution can be written as  

 

  nixxxxx
T

nii ,1,,...,, 02010  . 

 

Let the system steady state be described by coordinates 

   nixxx
T

ni ,1,,..., 00

1

0  . Define coordinates deflection  nixxx iii ,10   

characterizing the deflection of real behavior from undisturbed steady state behavior. 

Then we can rewrite equations  (3.1) in terms of these deflections: 

                                   nixxxf
dt

xd
ni

i ,1,,...,, 21 


                        (3.2) 

                                                     

 where if  are some nonlinear functions. 
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Equations (3.2) are called disturbed motion equations. Initial values of 

deflections  nixi ,1,
0

  are called disturbances. The solution of (3.2) at particular 

 txxxxx nii ,,...,, 02010   is a disturbed motion. 

A.M. Lyapunov in his works gave the following definitions of stability. 

The first definition: Undisturbed motion 0 ix  is called Stable according to 

Lyapunov with respect to variables ix  if at any given positive infinitesimal 0  

there exist positive 0  such that for all 0ix  if 

 

                                                   iix  0                                                       (3.3) 

 then disturbed motion (3.2) for 0tt   satisfies 

 

                                        iix  , ni ,1                                                      (3.4) 

 

Here norm is: 
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The second definition: Undisturbed motion is called Asymptotically Stable 

according to Lyapunov if additional condition 

                                             

                                     nitxi
t

,10)(lim 


                                              (3.5)   

                                                                                   

is satisfied. 

The third definition: Undisturbed motion is called  Unstable  according to 

Lyapunov if there exists moment of time 01 ttt   at which condition (3.4) is not 

satisfied, i.e.  

 nix ii ,1  . 

 

Geometrical interpretation 

 

Figures 3.2a  – 3.2d  give graphical presentation of notion mentioned above. 
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Fig. 3.2a. Stable motion Fig. 3.2b. Asymptotically Stable motion 

 
 

Fig. 3.2c. Unstable motion  Fig. 3.2d. Stable motion 

 

Physical meaning 

Simply stated, linear system is stable if its response to any finite action is also 

finite, and is unstable if the response is infinite. Stability is essential for normal 

operation of dynamic control systems. 

 

 7.2   Algebraic criteria of stability 

  

In this part we will deal with the question of linear (linearized, to be more 

precise) dynamic control systems stability. 

Let a dynamic system be described by a set of constant coefficient differential 

equations in terms of input and output signals: 
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Characteristic equation of (3.9) is of the form 
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Roots nsss ...,,, 21  define nature of transition process. Pay attention to the fact 

that letter s is used in characteristic equation as a complex number, not as a symbol of 

differentiation. 

In general, roots of the characteristic equation are in the form: 

1);,1(  jnijs iii   . In fig. 3.4 you can see possible positions of roots in 

the complex root plane S, at  

 

6676665542232221 ;;;0;;;  jsjsssjsjss i  . 

 
 

Fig. 3.4. Various positions of roots on complex plane 

 

If all roots are different, then they are called simple, and if not — divisible. 

As a rule, roots with negative real component are called left because of their left 

position relatively to the imaginary axis (“y” axis). Obviously, roots with positive 

real component are called right. 

Stability condition of the linear system is formulated as the following: if all 

roots of the characteristic equation are left, then the system is asymptotically stable 

(this condition is necessary and sufficient). 

Fortunately, if we have to determine, whether dynamic system is stable or not, 

there is no need to solve characteristic equation. There are some rules, called stability 

criteria, which can help us to determine stability of the system using characteristic 

equation coefficients. 

Stability criteria can be divided into algebraic and frequency. The most popular 

algebraic stability criteria are the ones of Routh and Hurwitz. We emphasize, that 

positive coefficients а0 > 0; а1 > 0; … аn > 0 of characteristic equation are necessary 

condition for system stability. 

Let us consider characteristic equation of linearized dynamic system: 

 

  .0...1
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Routh’s stability criterion 

British mathematician E. J. Routh proposed his algorithm in 1877, stated as the 

following: for a system to be stable it is necessary and sufficient for all coefficients of 

the first column of Routh table to be positive, i.e. nvcv ,1,01  .  
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Hence, if there is at least one negative coefficient, then the whole system is 

unstable.  

Coefficients of the first column of Routh table are defined in the following 

way:  
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where  nvv ...,,4,3  are diagonal determinants, obtained from Hurwitz matrix, 

which is of  ( nn ) dimension: 
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Hurwitz matrix is constructed in the following manner: the first row is filled 

with odd-indexed constant coefficients of characteristic equation; the second row is 

filled with even-indexed coefficients. The third and fourth rows are the first and 

second rows (correspondingly) shifted rightwards by one position, and so on. 

 

Hurwitz’s criterion of stability 

 

In 1895 A. Hurwitz (German mathematician) proposed, that for any closed-

loop system to be stable it is necessary and sufficient, that having 00 a all minors of 

Hurwitz determinant must be strictly positive, i.e. 
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Thus, positive coefficients of the characteristic equation (of degree 1 or 2) are 

necessary and sufficient condition for dynamic system stability. 

The last determinant, as you can see, encapsulates the whole matrix. But all 

elements of the last column, except the last one, are zeroes. Hence, the last Hurwitz’ 

determinant is found using previous one in the following way: 

 

                                             01  nnn a .                                            (3.11) 

  Since in stable system next to last element is positive 01  n , then 0na . 

In control theory three stability thresholds are accepted.  
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We can determine whether a system is on one of thresholds by making last 

determinant be equal to zero (taking into account that all other determinants are 

positive).  From inequality (3.11) we can obtain two conditions: 0,0 1  nna .  

Condition 0na  corresponds to the stability threshold of the first type — zero root 

or aperiodic stability threshold. Condition 01  n  corresponds to the stability 

threshold of the second type — oscillating stability Threshold. Stability threshold of 

the third type is infinite root, i.e. kS . 

 


